Exosomal tpi-miR-10a-5p from *T. pisiformis* cysticerci regulates the expression of inflammatory factors in rabbits by targeting MAP3K7

4 Guiting Pu^{1,4}, Liqun Wang¹, Tingli Liu¹, Dexian Wang¹, Hong Li¹, Tharheer

5 Oluwashola Amuda¹, Hong Yin^{1,3}, Hongbin Yan¹, Xueyong Zhang^{2*}, Xuenong

6 Luo^{1,3*}

7	State Key	Laboratory	for Animal	Disease	Control a	and Prevention.	WOAH Reference
	2	J					

- 8 Laboratory for Cysticercosis, Key Laboratory of Veterinary Parasitology of Gansu
- 9 Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural

10 Sciences (CAAS), Lanzhou, Gansu Province 730046, PR China.

- ¹¹ ²Academy of Animal Sciences and Veterinary Medicine, Qinghai Provincial Key
- 12 Laboratory of Pathogen Diagnosis for Animal Disease and Green Technical Research
- 13 for Prevention and Control, Qinghai University, Xining 810016, PR China
- ¹⁴ ³Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal
- 15 Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
- ⁴Department of Animal Husbandry and Veterinary Medicine, Hebei Tourism College,
- 17 Chengde 067000, PR China
- 18 ***Correspondence:** zhang_xyong@163.com, luoxuenong@caas.cn
- 19 E-mail addresses
- 20 Xuenong Luo: luoxuenong@caas.cn
- 21 Xueyong Zhang: zhang_xyong@163.com
- 22 Guiting Pu: puguiting@163.com

- 23 Liqun Wang: wlq1282690114@163.com
- 24 Tingli Liu: LTL1114@163.com
- 25 Dexian Wang: 965744167@qq.com
- 26 Hong Li: lihong16602307354@163.com
- 27 Tharheer Oluwashola Amuda: <u>Tharheer4sure@gmail.com</u>
- Hong Yin: <u>yinhong@caas.cn</u>
- 29 Hongbin Yan: <u>yanhongbin@caas.cn</u>
- 30

31 Abstract

Taenia pisiformis (T. pisiformis) cysticerci, belonging to Taeniidae, attaches to the 32 wall of the mesentery and omentum in rabbits, causing cysticercosis pisiformis that 33 34 can seriously affect the healthy development of the rabbit breeding industry. Helminths can produce exosomes, small vesicles containing proteins and RNAs. In 35 our previous study, tpi-miR-10a-5p was found to be highly enriched in the exosomes 36 37 from T. pisiformis cysticerci. In this study, we report that tpi-miR-10a-5p is significantly up-regulated in the blood and peripheral blood lymphocytes (PBLCs) in 38 rabbits infected with *T. pisiformis* cysticerci. Furthermore, tpi-miR-10a-5p targets 39 mitogen-activated protein kinase kinase kinase 7 (MAP3K7), the key gene involved in 40 the c-Jun N-terminal kinase (JNK) signaling pathway. Knockdown of MAP3K7 41 inhibits the JNK signaling pathway, suppressing the production of inflammatory 42 cytokines such as IFN- γ and TNF α , while overexpression of MAP3K7 activates the 43 JNK signaling pathway in PBLCs. The same trend is observed with knockdown of 44

45	MAP3K/ when PBLCs were treated with exosomes from <i>1</i> . <i>pistformis</i> cysticerci. <i>In</i>
46	vivo experiments further demonstrate that the expression of MAP3K7, JNK, p-JNK,
47	IFN- γ , and TNF α is significantly decreased in PBLCs during <i>T. pisiformis</i> infection.
48	Therefore, tpi-miR-10a-5p can suppress the JNK signaling pathway and inflammatory
49	response by targeting MAP3K7 in PBLCs. These findings may imply a mechanism
50	used by the parasites releasing exosomes to sense and adapt to the host environment
51	by regulating the immune reaction.
52	Keywords: T. pisiformis cysticerci; tpi-miR-10a-5p; MAP3K7; Exsome; Rabbits

54 **1 Introduction**

Cysticercosis pisiformis, caused by the larva of Taenia pisiformis (T. pisiformis), can 55 56 lead to significant economic losses due to the poor physical condition of rabbits, such as weight loss (Yang et al., 2013), decreased prolificacy, and even death 57 (Hallal-Calleros et al., 2016). The oncospheres hatch from the eggs after T. pisiformis 58 infection and then migrated from the blood to the liver, and eventually to the 59 abdominal cavity (Samorek-Pieróg et al., 2021). Lymphocytes in peripheral blood 60 play a crucial role in maintaining immune response and resisting parasitic infections. 61 A significant Th2-type responses is induced during *Schistosoma* infection due to 62 cytokine production by peripheral blood mononuclear cells (Pearce and MacDonald, 63 2002). Studies have shown that parasite infection can alter the expression of miRNA 64 and mRNA in peripheral blood lymphocytes (Lueong et al., 2013; Takeda et al., 65 2003). However, the specific role of peripheral blood lymphocytes in cysticercosis 66

67	pisiformis remains unclear.
68	Exosomes, extracellular vesicles with diameters ranging from 40 to 160 nm, play vital
69	roles in regulating intercellular communication. They can release contents, including
70	proteins and nucleic acids, by integrating with the cytomembrane or being taken up
71	and internalized into phagosomes, particularly in the immune system (Kalluri and
72	LeBleu, 2020; Pegtel and Gould, 2019). Research has shown that parasite-derived
73	exosomes could be taken up by host cells to modulate immune response, which is
74	beneficial for parasites to adapt to the host environment (Samoil et al., 2018). Many
75	research demonstrated the presence of EVs in helminths, including flatworms,
76	highlighting their potential role in intercellular communication and immune
77	regulation. MicroRNAs (miRNAs), about 18-25 nucleotides in length, can regulate
78	gene expression through binding and degrading the target messenger RNA (mRNA)
79	(Lu and Rothenberg, 2018; Correia de Sousa et al., 2019). Recently, miRNAs have
80	been identified in exosomes, which can modulate the function of recipient cells (Yu et
81	al., 2016; Li et al., 2020; Zhang et al., 2015; Valadi et al., 2007). The exosomes from
82	Heligmosomoides polygyrus containing miRNAs were transferred to mouse small
83	intestinal epithelial cells and suppressed Type 2 innate responses (Buck et al., 2014).
84	Exosome-like vesicles isolated from Brugiamalayi stimulated a classically activated
85	macrophage differentiation in the J774A.1 cell line (Zamanian et al., 2015). The
86	egr-miR-277a-3p of Echinococcus granulosus targeting NF-kB1 induced the
87	production of pro-inflammatory cytokines and modulated the host immune responses
88	(Zhang et al., 2022). Some studies have shown that helminth-derived exosomal

miRNAs can influence the host's inflammatory response (Bernal et al., 2014; Gracias
and Katsikis, 2011).

91	A previous study reported that miR-10a-5p is highly enriched in the exosomes from T_{i}
92	pisiformis cysticerci (Wang et al., 2020). Therefore, the aim of this study is to clarify
93	the mechanism of <i>T. pisiformis</i> cysticerci-derived miR-10a-5p in exosomes regulating
94	PBLCs immune responses. This finding will demonstrate the function of <i>T. pisiformis</i>
95	cysticerci-derived miR-10a-5p in regulating host cell immune responses, and its
96	possible role in <i>T. pisiformis</i> immune evasion from host attacks, providing reliable
97	evidence for further investigation into the mechanism of <i>T. pisiformis</i> invasion.
98	

99 **2 Materials and methods**

100 **2.1 Ethics**

All animal experiment procedures were approved by the Animal Administration and
Ethics Committee of the Lanzhou Veterinary Research Institute, Chinese Academy of
Agricultural Sciences (LVRIAEC2021-028) and conducted in accordance with the
Guide for the Care and Use of Laboratory Animals of the Ministry of Science and
Technology of the People's Republic of China.

106

107 **2.2 Animals and parasites**

T. pisiformis eggs were obtained from dogs experimentally infected with *T. pisiformis*cysticerci and were maintained at the animal facilities of the Lanzhou Veterinary
Research Institute. New Zealand white rabbits weighing 1.5 to 2 kg (n = 12) were

111 purchased from the Laboratory Animal Center of the Lanzhou Veterinary Research

112 Institute. Each rabbit in the experimental group (E, n=8) was artificially challenged

with 1000 eggs of *T. pisiformis*, while the control group (C, n=4) was treated with the

- same volume of PBS (Phosphate Buffered Saline).
- 115

116 **2.3** Cysticerci culture and collection of exosomes (EXO)

- 117 Cysticerci were harvested from the peritoneal cavities of rabbits infected with T.
- 118 *pisiformis* and washed three times in sterile PBS supplemented with 100 µg/mL
- streptomycin and 100 IU/mL penicillin (Gibco, USA). Then the cysticerci were rinsed

in RPMI 1640 medium and cultured in this medium with 10% exosome-depleted fetal

bovine serum (FBS), 100 µg/mL streptomycin and 100 IU/mL penicillin in an

incubator containing 5% CO₂ at 37 °C. The culture medium was replaced after 12 h,

and excretory/secretory products were collected at 24 h and 48 h.

124 A total of 100 mL of pooled excretory/secretory products were used to isolate the

exosomes. Firstly, they were centrifuged for 10 min at $300 \times g$ at 4 °C and then

126 centrifuged for 30 min at $10,000 \times g$ at 4 °C to eliminate cell fragments and dead

127 cells. The supernatants were ultra-centrifuged for 90 min at 75,000 × g at 4 °C in a

128 Beckman Coulter Optima L-100 XP centrifuge to remove large vesicles.

129 Subsequently, the supernatants were sterilized using a 0.22 µm filter and further

ultra-centrifuged for 90 min at $110,000 \times g$ at 4 °C (Wang et al., 2020). The

- 131 precipitate was washed with sterile PBS, then ultra-centrifuged at $110,000 \times g$ for
- another 90 min. The exosomes were then re-suspended in 50 μ L of PBS. Finally, the

133 protein concentration of the exosomes was determined with a BCA kit (Vazyme,

- 134 China), and the amount of endotoxin concentration detected by the ToxinSensor™
- 135 Chromogenic LAL Endotoxin Assay Kit (GenScript, USA) was confirmed to be <
- 136 0.05 EU/ml. The exosomes were divided into aliquots and stored at -80 °C.
- 137

138 2.4 Transmission electron microscope and nanoparticle 139 tracking analysis (NTA)

- 140 To clarify the size, shape, and structure of exosomes, a microscopy technique called
- 141 transmission electron microscopy (TEM) (Hitachi Ltd., Japan) was performed. 10 μL
- of exosomes were added to a 200-mesh copper grid and incubated for 10 min at room
- temperature. The morphology and size of the exosomes were observed under a
- transmission electron microscope at 80 kV after negative staining with 3%
- 145 phosphotungstic acid (Sigma, USA).
- 146 Nanoparticle tracking analysis, which tracks the Brownian motion of each
- 147 nanoparticle in a solution, was used to observe the size distribution of exosomes. This
- 148 was done using a NanoSight LM10 instrument (Nanosight, UK) as previously
- 149 reported (Tiwari et al., 2021).
- 150

151 **2.5 Cells culture and treatment**

About 30 mL of fresh peripheral blood from uninfected rabbits was collected in blood collection tubes with EDTA anticoagulant, and primary PBLCs were isolated from the fresh blood using the rabbit peripheral blood lymphocytes isolation kit (TBD Science,

155	China). The PBLCs were then plated into 12-well plates and cultured in RPMI-1640
156	medium with 10% FBS and 1% penicillin-streptomycin in an incubator with 5% CO ₂
157	at 37°C.
158	For transfection experiments, the RPMI-1640 medium was replaced with Opti-MEM

158	For transfection experiments, the RPMI-1640 medium was replaced with Opti-MEM
159	(Invitrogen, USA). The PBLCs were transfected with 100 nmol/L of miR-10a-5p
160	mimics or 100 nmol/L of mimics NC (negative control). For MAP3K7 silencing, the
161	PBLCs were transfected with MAP3K7 (Gene ID: 100343571) siRNA or siRNA-NC
162	(negative control, Sangon, China) using Lipofectamine [™] RNAiMAX Transfection
163	Reagent (Invitrogen, USA). In the MAP3K7 over expression experiment, 2 $\mu g/mL$ of
164	pmCherry-N1 (empty vector) or 2 µg/mL of pmCherry-N1-MAP3K7 (Sangon, China)
165	was transfected into the PBLCs using Lipofectamine 3000 (Invitrogen, USA). In the
166	exosomes treatment experiments, PBLCs were treated with 25 μ g/mL of exosomes or
167	the same volume of PBS and then incubated at 37 °C for 24 h in an incubator. Each
168	treatment was repeated three times. The sequences of all mimics and siRNAs are
169	shown in Supplementary Table S1.

171 **2.6 PCR and quantitative real-time PCR**

172 Total RNA was extracted separately from *T. pisiformis* cysticercus, exosomes, PBLCs

and fresh whole blood using TRIzol reagents (Invitrogen, USA). Nanodrop

174 spectrophotometer (Thermo, USA) was used for RNA purity and quantification

- analysis. 1 µg of total RNA was reverse transcribed into cDNA using either the
- 176 miRNA 1st Strand cDNA Synthesis Kit (by tailing A) or the HiScriptIII 1st Strand

177 cDNA Synthesis Kit (with+gDNA wiper).

178	PCR was performed using 2 × Taq Master Mix on a Cycler (Thermo, USA). The
179	temperature program consisted of an initial denaturation step at 94 $^{\circ}C$ for 5 min,
180	followed by 34 cycles of denaturation at 94 °C for 30 sec, annealing at 58 °C for 30
181	sec, and extension at 72 °C for 6 sec, with a final extension step at 72 °C for 7 min.
182	PCR amplification products were detected by agarose gel electrophoresis.
183	qPCR was performed on an ABI 7500 instrument (Thermo, USA) using the SYBR
184	Green Premix Pro Taq HS qPCR Kit. The protocol included initial denaturation at
185	95 °C for 5 min, followed by 40 cycles of denaturation at 95 °C for 10 sec, and
186	annealing/extension at 60 °C for 30 sec. The relative expression levels of
187	mRNA/miRNA were normalized to GAPDH/U6 and calculated using the $2^{-\Delta\Delta Ct}$.
188	Statistical analysis was based on data from three independent experiments. The primer
189	sequences can be found in Table 1.
190	
191	2.7 Luciferase assay
192	1×10^5 HEK293T cells were seeded per well on 24-well plates. 1.5 µg of
193	pmirGLO-MAP3K7-WT (MAP3K7-WT, Sangon, China) or
194	pmirGLO-MAP3K7-Mut (MAP3K7-Mut, Sangon, China) was co-transfected with 20
195	µmol/L of miR-10a-5p mimics or mimics NC using Lipofectamine 3000 when cells

- reached 70 \sim 80% confluence. The cells were then incubated for 24 h in a 5% CO₂
- 197 incubator at 37 °C. Luciferase activity in the supernatant of the lysed cells was
- 198 measured using a Dual Luciferase Reporter Assay System (Vazyme, China), and the

199 ratio of firefly luciferase activity to that of Renilla was calculated.

200

201	2.8	Western	blot	analysis
201				unu y 515

202	Total protein was extracted from cells using RIPA buffer (Thermo, USA)
203	supplemented with protease-phosphatase inhibitor (NCM Biotech, China) and
204	quantified using BCA kit (Vazyme, China). Approximately 25 μ g of protein was
205	separated by 12% SDS polyacrylamide gel electrophoresis and transferred to PVDF
206	membranes. After blocking with 5% non-fat dried milk, the PVDF membranes were
207	incubated with corresponding primary antibodies at 4 °C overnight: rabbit
208	anti-MAP3K7 polyclonal antibody (1:1000, Affinity, China), rabbit anti-JNK
209	polyclonal antibody (1:1000, Affinity, China), rabbit anti-p-JNK polyclonal antibody
210	(1:1000, Affinity, China), rabbit anti-IFN-7 polyclonal antibody (1:1000, Affinity,
211	China), mouse anti-TNFα monoclonal antibody (1:1000, Proteintech, China), rabbit
212	anti-IL10 polyclonal antibody (1:1000, Affinity, China) and rabbit anti-β-actin
213	polyclonal antibody (1:5000, Bioss, China). After washing three times with
214	Tris-buffered saline with 0.1% Tween 20 (TBST), the membranes were subsequently
215	incubated with rabbit anti-mouse IgG-HRP antibody (1:4000, Biodragon, China) or
216	goat anti-rabbit IgG-HRP antibody (1:4000, Biodragon, China) for 1h at room
217	temperature. The bands were visualized using high resolution image acquisition
218	system (BioRad, USA) with BeyoECL Moon reagent (Beyotime, China), and the
219	intensities of the bands were analyzed using ImageJ software.

221 **2.9 Statistical analysis**

Statistical analysis was conducted using with GraphPad Prism 8. A *t*-test was used to compare differences between two groups, with a significant level set at p < 0.05.

225 **3 Results**

3.1 Release of tpi-miR-10a-5p derived from exosomes of *T*. *pisiformis* cysticerci into the rabbit blood stream

NTA and TEM showed that the exosomes were round or oval vesicles with a diameter 228 of approximately 30 ~ 140 nm, as expected (Figure 1A, 1B). The tpi-miR-10a-5p 229 sequence was amplified by RT-PCR using total RNA from exosomes that were 230 reversely transcribed to cDNA via the miRNA 1st Strand cDNA Synthesis Kit (with 231 232 A-tailing) as a template (Figure 1C), and further confirmed by sequencing (Figure S1). At same time, the precursor sequence of tpi-miR-10a-5p was amplified from T. 233 pisiformis cysticerci, and confirmed by sequencing (Figure S2), but no results were 234 found from rabbits, only some primer dimers (Figure 1D). The expression level of 235 tpi-miR-10a-5p was significantly up-regulated in the blood and PBLCs of rabbits 236 infected with T. pisiformis (Figure 1E, 1F). In summary, the above results 237 demonstrate that tpi-miR-10a-5p was potentially released into the blood stream of 238 rabbits by exosomes of T. pisiformis cysticerci. 239

240

Fig. 1 | Tpi-miR-10a-5p exists in exosomes and rabbits infected with *T. pisiformis*.
(A) Nanoparticle tracking analysis of exosomes. (B) Morphology of exosomes

243	observed by transmission electron microscope. (C) PCR amplification products of
244	tpi-miR-10a-5p from exosomes. M: DNA maker; 1~2: PCR products from exosomes;
245	3: Negative control. (D) PCR amplification products of the precursor sequence of
246	tpi-miR-10a-5p from <i>T. pisiformis</i> cysticerci or rabbits. M: DNA maker; 1: PCR
247	products from PBLCs of rabbits; 2: PCR products from T. pisiformis cysticerci; 3:
248	Negative control. (E) The relative expression level of tpi-miR-10a-5p in rabbit blood
249	was determined by RT-qPCR. (F) The relative expression level of tpi-miR-10a-5p in
250	rabbit PBLCs was determined by RT-qPCR. The corresponding p value was
251	calculated between the experimental group and the control group by <i>t</i> -test, * $p < 0.05$,
252	** $p < 0.01$, *** $p < 0.001$.
253	Abbreviations: 30d-C: PBLCs from rabbits 30 days treated with PBS; 30d-E: PBLCs
254	from rabbits 30 days post-infection with T. pisiformis cysticerci.
254 255	from rabbits 30 days post-infection with <i>T. pisiformis cysticerci</i> .
254 255 256	from rabbits 30 days post-infection with <i>T. pisiformis cysticerci</i> . 3.2 Tpi-miR-10a-5 suppresses MAP3K7 expression by
254 255 256 257	from rabbits 30 days post-infection with <i>T. pisiformis cysticerci</i> . 3.2 Tpi-miR-10a-5 suppresses MAP3K7 expression by directly binding to the 3'-UTR
254 255 256 257 258	from rabbits 30 days post-infection with <i>T. pisiformis cysticerci</i> . 3.2 Tpi-miR-10a-5 suppresses MAP3K7 expression by directly binding to the 3'-UTR Initially, MAP3K7 was identified as a candidate target gene of tpi-miR-10a-5p
254 255 256 257 258 259	from rabbits 30 days post-infection with <i>T. pisiformis cysticerci</i> . 3.2 Tpi-miR-10a-5 suppresses MAP3K7 expression by directly binding to the 3'-UTR Initially, MAP3K7 was identified as a candidate target gene of tpi-miR-10a-5p through predictions from the miRDB and TargetScan databases, and was further
254 255 256 257 258 259 260	from rabbits 30 days post-infection with <i>T. pisiformis cysticerci</i> . 3.2 Tpi-miR-10a-5 suppresses MAP3K7 expression by directly binding to the 3'-UTR Initially, MAP3K7 was identified as a candidate target gene of tpi-miR-10a-5p through predictions from the miRDB and TargetScan databases, and was further validated by RT-qPCR. MAP3K7, a gene associated with immune response, was
254 255 256 257 258 259 260 261	from rabbits 30 days post-infection with <i>T. pisiformis cysticerci</i> . 3.2 Tpi-miR-10a-5 suppresses MAP3K7 expression by directly binding to the 3'-UTR Initially, MAP3K7 was identified as a candidate target gene of tpi-miR-10a-5p through predictions from the miRDB and TargetScan databases, and was further validated by RT-qPCR. MAP3K7, a gene associated with immune response, was significantly down-regulated in tpi-miR-10a-5p overexpressed PBLCs (Figure 2A).
254 255 256 257 258 259 260 261 262	from rabbits 30 days post-infection with <i>T. pisiformis cysticerci</i> . 3.2 Tpi-miR-10a-5 suppresses MAP3K7 expression by directly binding to the 3'-UTR Initially, MAP3K7 was identified as a candidate target gene of tpi-miR-10a-5p through predictions from the miRDB and TargetScan databases, and was further validated by RT-qPCR. MAP3K7, a gene associated with immune response, was significantly down-regulated in tpi-miR-10a-5p overexpressed PBLCs (Figure 2A). Subsequent analysis revealed that the 3'-UTR of MAP3K7 contained a potential
254 255 256 257 258 259 260 261 262 263	from rabbits 30 days post-infection with <i>T. pisiformis cysticerci</i> . 3.2 Tpi-miR-10a-5 suppresses MAP3K7 expression by directly binding to the 3'-UTR Initially, MAP3K7 was identified as a candidate target gene of tpi-miR-10a-5p through predictions from the miRDB and TargetScan databases, and was further validated by RT-qPCR. MAP3K7, a gene associated with immune response, was significantly down-regulated in tpi-miR-10a-5p overexpressed PBLCs (Figure 2A). Subsequent analysis revealed that the 3'-UTR of MAP3K7 contained a potential binding site for tpi-miR-10a-5p (Figure 2B). Additionally, analysis of MAP3K7

265	inhibit MAP3K7 expression in PBLCs (Figure 2C, 2D, 2E). Further validation of the
266	relationship between tpi-miR-10a-5p and MAP3K7 was conducted, showing that
267	luciferase activity decreased in HEK293T cells co-transfected with
268	pmirGLO-MAP3K7-WT and tpi-miR-10a-5p mimics (Figure 2F). Furthermore,
269	MAP3K7 expression was reduced in PBLCs from rabbits 30 days post-infection
270	(Figure 2G). The correlation between miR-10-5p and MAP3K7 relative expression in
271	infected and uninfected PBLCs was analyzed and the correlation coefficient (R) was
272	-0.5299, indicating a negative correlation between the two variables (Figure S3).
273	These results confirm that the expression of MAP3K7 can be regulated by
274	tpi-miR-10a-5p derived from <i>T. pisiformis</i> .
275	
276	Fig. 2 MAP3K7 is a direct target of tpi-miR-10a-5p. (A) The expression levels of
276 277	Fig. 2 MAP3K7 is a direct target of tpi-miR-10a-5p. (A) The expression levels of candidate target genes in PBLCs transfected with tpi-miR-10a-5p mimics were
276 277 278	Fig. 2 MAP3K7 is a direct target of tpi-miR-10a-5p. (A) The expression levels of candidate target genes in PBLCs transfected with tpi-miR-10a-5p mimics were detected by RT-qPCR. (B) The potential binding site of tpi-miR-10a-5p and MAP3K7
276 277 278 279	Fig. 2 MAP3K7 is a direct target of tpi-miR-10a-5p. (A) The expression levels of candidate target genes in PBLCs transfected with tpi-miR-10a-5p mimics were detected by RT-qPCR. (B) The potential binding site of tpi-miR-10a-5p and MAP3K7 3'-UTR, as well as the sequences of wild-type and mutant plasmids. (C) Transfection
276 277 278 279 280	Fig. 2 MAP3K7 is a direct target of tpi-miR-10a-5p. (A) The expression levels of candidate target genes in PBLCs transfected with tpi-miR-10a-5p mimics were detected by RT-qPCR. (B) The potential binding site of tpi-miR-10a-5p and MAP3K7 3'-UTR, as well as the sequences of wild-type and mutant plasmids. (C) Transfection efficiency of tpi-miR-10a-5p mimics in PBLCs was detected by RT-qPCR. (D) The
276 277 278 279 280 281	Fig. 2 MAP3K7 is a direct target of tpi-miR-10a-5p. (A) The expression levels of candidate target genes in PBLCs transfected with tpi-miR-10a-5p mimics were detected by RT-qPCR. (B) The potential binding site of tpi-miR-10a-5p and MAP3K7 3'-UTR, as well as the sequences of wild-type and mutant plasmids. (C) Transfection efficiency of tpi-miR-10a-5p mimics in PBLCs was detected by RT-qPCR. (D) The relative mRNA and (E) protein expression levels of MAP3K7 in
276 277 278 279 280 281 282	Fig. 2 MAP3K7 is a direct target of tpi-miR-10a-5p. (A) The expression levels of candidate target genes in PBLCs transfected with tpi-miR-10a-5p mimics were detected by RT-qPCR. (B) The potential binding site of tpi-miR-10a-5p and MAP3K7 3'-UTR, as well as the sequences of wild-type and mutant plasmids. (C) Transfection efficiency of tpi-miR-10a-5p mimics in PBLCs was detected by RT-qPCR. (D) The relative mRNA and (E) protein expression levels of MAP3K7 in tpi-miR-10a-5p-overexpressed PBLCs were detected by RT-qPCR and Western blot,
276 277 278 279 280 281 282 282 283	Fig. 2 MAP3K7 is a direct target of tpi-miR-10a-5p. (A) The expression levels of candidate target genes in PBLCs transfected with tpi-miR-10a-5p mimics were detected by RT-qPCR. (B) The potential binding site of tpi-miR-10a-5p and MAP3K7 3'-UTR, as well as the sequences of wild-type and mutant plasmids. (C) Transfection efficiency of tpi-miR-10a-5p mimics in PBLCs was detected by RT-qPCR. (D) The relative mRNA and (E) protein expression levels of MAP3K7 in tpi-miR-10a-5p-overexpressed PBLCs were detected by RT-qPCR and Western blot, respectively. (F) The activity of luciferase in HEK293T cells transfected with
276 277 278 279 280 281 282 282 283 283	Fig. 2 MAP3K7 is a direct target of tpi-miR-10a-5p. (A) The expression levels of candidate target genes in PBLCs transfected with tpi-miR-10a-5p mimics were detected by RT-qPCR. (B) The potential binding site of tpi-miR-10a-5p and MAP3K7 3'-UTR, as well as the sequences of wild-type and mutant plasmids. (C) Transfection efficiency of tpi-miR-10a-5p mimics in PBLCs was detected by RT-qPCR. (D) The relative mRNA and (E) protein expression levels of MAP3K7 in tpi-miR-10a-5p-overexpressed PBLCs were detected by RT-qPCR and Western blot, respectively. (F) The activity of luciferase in HEK293T cells transfected with tpi-miR-10a-5p mimics and pmirGLO-MAP3K7-WT or pmirGLO-MAP3K7-Mut,

pisiformis -infected rabbits was detected by RT-qPCR. The corresponding *p* value

was calculated between the experimental group and the control group by *t*-test, * p < t

288 0.05, ** p < 0.01, *** p < 0.001. Abbreviations: MAP3K7-WT:

289 pmirGLO-MAP3K7-Wildtype; MAP3K7-Mut: pmirGLO-MAP3K7-Mutant; 30d-C:

290 PBLCs from rabbit 30 days treated with PBS; 30d-E: PBLCs from rabbits 30 days

291 post-infection with *T. pisiformis*.

292

3.3 Regulation of the JNK pathway and production of

²⁹⁴ inflammatory cytokines by MAP3K7

295 The interference efficiency of different MAP3K7 siRNAs was compared (Figure 3A),

and siMAP3K7-15, which had the highest interference efficiency, was used for the

following experiments. The relative expression levels of IFN- γ , TNF α , and iNOS

were significantly decreased in PBLCs transfected with MAP3K7 siRNA, while IL10

expression was increased (Figure 3B). Conversely, PBLCs transfected with

300 pmCherry-N1-MAP3K7 showed the opposite results (Figure 3C). The protein levels

301 of JNK, p-JNK, and IFN- γ were significantly down-regulated in PBLCs transfected

with MAP3K7 siRNA, while their protein levels were significantly up-regulated in

- 303 PBLCs transfected with pmCherry-N1-MAP3K7. The protein level of IL10 was
- up-regulated in PBLCs transfected with MAP3K7 siRNA, while the level of IL10 was
- down-regulated in PBLCs transfected with pmCherry-N1-MAP3K7 (Figure 3D).

306

Fig. 3 | MAP3K7 is a key regulator of the JNK pathway. (A) The expression level
of MAP3K7 in PBLCs transfected with three different MAP3K7 siRNAs was

309	detected by RT-qPCR. (B) The expression levels of inflammatory cytokines in PBLCs
310	transfected with MAP3K7 siRNA and (C) pmCherry-N1-MAP3K7 were detected by
311	RT-qPCR. (D) Protein expression levels of JNK, p-JNK, IFN-γ and IL10 in PBLCs
312	transfected with MAP3K7 siRNA and pmCherry-N1-MAP3K7 were detected by
313	Western blot. The corresponding p value was calculated between the experimental
314	group and the control group by <i>t</i> -test, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.
315	Abbreviations: siR-NC: siRNA-NC; siMAP3K7: MAP3K7 siRNA; EV: Empty
316	Vector (pmCherry-N1); MAP3K7: pmCherry-N1-MAP3K7.
317	

318 3.4 Production of pro-inflammatory cytokines is inhibited in 319 PBLCs treated with exosomes and in rabbits infected with *T*. 320 *pisiformis*

Real-time RT-PCR showed that the level of tpi-miR-10a-5p increased with increasing

of exosomes concentration (Figure 4A), while the expression of MAP3K7 decreased

- in PBLCs treated with exosomes (Figure 4B). Additionally, the expressions level of
- 324 IFN- γ , TNF α , and iNOS were significantly reduced in PBLCs treated with exosomes,
- while IL10 expression increased (Figure 4C). The protein levels of MAP3K7, JNK,
- p-JNK, TNF α , and IFN- γ were notably down-regulated in PBLCs treated with
- exosomes, while IL10 expression was up-regulated (Figure 4D). In vivo, only the
- 328 expression of MAP3K7, JNK, p-JNK, IFN-γ, and TNFα were significantly decreased
- at 30 days post *T. pisiformis* infection, consistent with the results *in vitro* (Figure 4E,
- 330 4F).

332	Fig. 4 Production of pro-inflammatory cytokines is inhibited in PBLCs treated
333	with exosomes or infected with <i>T. pisiformis.</i> (A) The levels of miR-10a-5p, (B)
334	MAP3K7 and (C) inflammatory cytokines in PBLCs treated with exosomes were
335	analyzed. (D) Protein expression levels of MAP3K7, JNK, p-JNK, IFN- γ TNF α and
336	IL10 in PBLCs treated with exosomes were detected using Western blot. (E) The
337	expression levels of inflammatory cytokines in PBLCs from 30 days T. pisiformis
338	-infected rabbits were detected by RT-qPCR. (F) Protein expression levels of
339	MAP3K7, JNK, p-JNK, IFN- γ TNF α and IL10 in PBLCs from 30 days <i>T. pisiformis</i>
340	-infected rabbits were detected by Western blot. The corresponding p value was
341	calculated between the experimental and the control group by <i>t</i> -test, * $p < 0.05$, ** $p <$
342	0.01, *** $p < 0.001$. Abbreviations: PBS: PBLCs treated with PBS; EXO: PBLCs
343	treated with exosomes; 30d-C: PBLCs from rabbit 30 days treated with PBS; 30d-E:
344	PBLCs from rabbit 30 days post-infection with T. pisiformis.
345	

346 **4 Discussion**

Cysticercosis pisiformis, caused by the larval stage of *T. pisiformis*, is a common parasitic disease in rabbits. However, it remains unclear how *T. pisiformis* cysticerci modulates the immune response in the host, thereby promoting parasite invasion and survival within the host. Throughout the long-term evolution, the complex interaction between the parasite and the host has established a delicate balance conducive to the survival and development of both parties (Su et al., 2020).

353	Exosomes, small extracellular vesicles, are important carriers of material exchange
354	containing proteins and RNAs. Immunocytes such as dendritic cells and macrophages
355	can uptake exosomes derived from parasites, indirectly regulating the function of
356	recipient cells (Eichenberger et al., 2018). The extracellular vesicles derived from E .
357	granulosus hydatid fluid can modulate the immune response, leading to increased
358	production of certain cytokines such as IL-10, and TNF- α in sheep PBMCs during
359	infection (Yang et al., 2021). Exosomes from Leishmania can transfer proteins to host
360	macrophages, thereby eliciting acquired immune responses (Silverman et al., 2010;
361	Weber et al., 2023). Consequently, the immunoregulatory effects induced by
362	exosomes can be attributed to the complex substances they carry, such as miRNAs
363	and proteins. Exosomal miRNAs from T. pisiformis cysticerci are reported to regulate
364	macrophage polarization and inhibit the immune response in rabbits (Wang et al.,
365	2021; Chen et al., 2023). In our previous research, small RNA sequencing revealed
366	that tpi-miR-10a-5p was enriched in exosomes derived from T. pisiformis cysticerci
367	(Wang et al., 2020), but the role of tpi-miR-10a-5p in the interaction between
368	cysticercus and rabbits is unclear. Tran et al demonstrated that one of the most
369	abundant miRNAs, fhe-miR-125b, is released by the parasite via exosomes. This
370	miRNA regulates the activation of pro-inflammatory M1 macrophages in BALB/c
371	mice infected with Fasciola hepatica [30]. Based on the above results, we infer that T.
372	pisiformis cysticerci-derived miR-10a-5p can be released into the bloodstream
373	through exosome transportation and regulate the function of host cells. In this study,
374	parasite-derived miR-10a-5p was identified to be expressed in both serum and PBLCs

375	in rabbits infected with <i>T. pisiformis</i> . Furthermore, the level of tpi-miR-10a-5p was
376	up-regulated in the PBLCs of rabbit infected <i>T. pisiformis</i> , displaying a closer
377	correlation between the level of tpi-miR-10a-5p and cysticercus infection, which
378	implies that the function of PBLCs can be regulated by serum tpi-miR-10a-5p uptake
379	in <i>T. pisiformis</i> infected rabbits.
380	In vitro and in vivo experiments have confirmed that tpi-miR-10a-5p can target
381	MAP3K7, which is associated with the activation of NF-kB, JNK and p38
382	(Ninomiya-Tsuji et al., 1999; Sun et al., 2022). The JNK and p38 pathway both
383	belonging to the MAPK (mitogen-activated protein kinases) family are well-known
384	for their involvement in the regulation of inflammatory reactions (Rincón et al., 2000).
385	Our experiments involving MAP3K7 knockdown and over-expression demonstrated
386	the impact of MAP3K7 expression on JNK, p-JNK, IFN-y, and IL10 production,
387	which further indicated that MAP3K7 plays an important role in host immune
388	response.
389	Additionally, as exosome concentrations increased, the expression of tpi-miR-10a-5p
390	also increased in PBLCs, indicating that tpi-miR-10a-5p was enriched in T. pisiformis
391	cysticerci derived exosomes. Interestingly, the expression of the target gene MAP3K7
392	did not follow the same trend as tpi-miR-10a-5p overexpression after exosome
393	treatment, suggesting that MAP3K7 may be modulated by other T. pisiformis
394	cysticerci exosomal RNAs and proteins in addition to tpi-miR-10a-5p. Multiple
395	studies have shown that each gene can be regulated by several miRNAs, contributing
396	to a complex regulatory network. As a result, MAP3K7 exhibited a different

397	expression pattern between exosomes and tpi-miR-10a-5p treated PBLCs. Long
398	non-coding RNA CCDC144NL-AS1 can act as a sponge for miR-143-3p and
399	up-regulate MAP3K7 by competing as an endogenous RNA in gastric cancer,
400	indicating that MAP3K7 is regulated not only by miR-143-3p but also by LncRNA.
401	Further research will be conducted to elucidate the potential regulatory mechanism of
402	MAP3K7 in rabbit PBLCs treated with T. pisiformis cysticerci exosomes.
403	The expression level of iNOS was substantially down-regulated in RAW264.7 cells
404	treated with extracellular vesicles from E. multilocularis (Zheng et al., 2017). In our
405	experiments, crucial genes involved in the JNK signaling pathway, such as JNK and
406	p-JNK, were reduced in PBLCs treated with exosomes. Additionally, the expression
407	of inflammatory cytokines like IFN- γ and TNF α was also decreased, while the
408	expression of IL10 was increased. Previous studies have shown that miRNA from
409	parasite exosomes can regulate host immune responses (Bernal et al., 2014), and our
410	study also suggests that immune regulation may be partially attributed to the high
411	enrichment of tpi-miR-10a-5p in exosomes. In vivo experiments, the expression of
412	tpi-miR-10a-5p was increased and MAP3K7 was decreased in PBLCs from rabbits 30
413	days post-infection with T. pisiformis. At the same time, the expressions of JNK,
414	p-JNK, IFN- γ , and TNF α were significantly decreased, and IL10 showed an
415	increasing trend but was not significant. This suggests that the results in rabbits
416	infected with <i>T. pisiformis</i> were in substantial agreement with those in the in vitro
417	experiment.

418 The production of inflammatory cytokines, including pro- and anti-inflammatory

419	cytokines in the host, is influenced by various factors and regulatory networks. In the
420	last stages of helminth infection, there is an increase in the production of
421	anti-inflammatory cytokines, which is thought to be crucial for both eliminating
422	parasites and repairing damaged tissues (Peng et al., 2022; Vacca and Le Gros, 2022).
423	Exosomes, which are key components of parasites' excretory/secretory products,
424	present a novel concept and method for communication between the parasite and host
425	cells (Marcilla et al., 2012). Additionally, exosomal miRNA may have a significant
426	impact on important role in regulating and evading the host immune response
427	throughout the infection process.
428	
429	5 Conclusions
430	C. pisiformis-derived tpi-miR-10a-5p can be released into the peripheral blood of
431	rabbits through exosomes. As a result, the target gene of tpi-miR-10a-5p, MAP3K7, is
432	down-regulated, leading to the suppression of inflammatory cytokines production
433	through the JNK pathway, which is beneficial for the survival and development of T .
434	pisiformis cysticerci in the rabbits.
435	
436	Funding
437	This work was supported by the National Key Research and Development Program of
438	China (2023YFD1802401), the National Natural Science Foundation of China

- 439 (32072889), and the Science and Technology Program of the Department of Science
- and Technology of the Tibet Autonomous Region (XZ202401JD0012). We thank the

- 441 scientific staff at the Instrument Center of Lanzhou Veterinary Research Institute for
- 442 their technical assistance.

443 **Potential conflicts of interest**

444 The authors have declared that no competing interests exist.

445 Author contributions

- 446 Xuenong Luo: Conceptualization, Funding acquisition, Resources, Supervision,
- 447 Validation, Visualization, Writing- original draft, Writing- review & editing
- 448 Xueyong Zhang: Conceptualization, Supervision, Validation, Writing– review &
- 449 editing
- 450 Guiting Pu: Conceptualization, Formal analysis, Methodology, Software, Validation,
- 451 Writing- original draft, Writing- original draft, Writing- review & editing
- 452 Liqun Wang: Software, Validation, Writing- original draft, Writing- review &
- 453 editing
- 454 Tingli Liu: Validation, Writing- original draft
- 455 Dexian Wang: Investigation, Validation
- 456 Hong Li: Investigation, Validation
- 457 Tharheer Oluwashola Amuda: Writing– original draft, Writing– review & editing
- 458 Hong Yin: Methodologyt, Writing– review & editing
- 459 Hongbin Yan: Investigation, Validation

460 **References**

BERNAL D, TRELIS M, MONTANER S, et al. 2014. Surface analysis of Dicrocoelium dendriticum. The molecular characterization of exosomes reveals the presence of miRNAs. J Proteomics. [J]. 105: 232-241. 10.1016/j.jprot.2014.02.012.

465	BUCK A H, COAKLEY G, SIMBARI F, et al. 2014. Exosomes secreted by
466	nematode parasites transfer small RNAs to mammalian cells and modulate
467	innate immunity. Nat Commun. [J]. 5: 5488. 10.1038/ncomms6488.
468	CHEN G, PU G, WANG L, et al. 2023. Cysticercus pisiformis-derived novel-miR1
469	targets TLR2 to inhibit the immune response in rabbits. Front Immunol. [J].
470	14. 10.3389/fimmu.2023.1201455.
471	CORREIA DE SOUSA M, GJORGJIEVA M, DOLICKA D, et al. 2019. Deciphering
472	miRNAs' Action through miRNA Editing. Int J Mol Sci. [J]. 20.
473	10.3390/ijms20246249.
474	EICHENBERGER R M, SOTILLO J, LOUKAS A 2018. Immunobiology of parasitic
475	worm extracellular vesicles. Immunol Cell Biol. [J]. 10.1111/imcb.12171.
476	GRACIAS D T, KATSIKIS P D 2011. MicroRNAs: key components of immune
477	regulation. Adv Exp Med Biol. [J]. 780: 15-26.
478	10.1007/978-1-4419-5632-3_2.
479	HALLAL-CALLEROS C, MORALES-MONTOR J, ORIHUELA-TRUJILLO A, et
480	al. 2016. Taenia pisiformis cysticercosis induces decreased prolificacy and
481	increased progesterone levels in rabbits. Vet Parasitol. [J]. 229: 50-53.
482	10.1016/j.vetpar.2016.09.015.
483	KALLURI R, LEBLEU V S 2020. The biology, function, and biomedical applications
484	of exosomes. Science. [J]. 367. 10.1126/science.aau6977.
485	LI D, WANG Y, JIN X, et al. 2020. NK cell-derived exosomes carry miR-207 and
486	alleviate depression-like symptoms in mice. J Neuroinflammation. [J]. 17:
487	126. 10.1186/s12974-020-01787-4.
488	LU T X, ROTHENBERG M E 2018. MicroRNA. J Allergy Clin Immunol. [J]. 141:
489	1202-1207. 10.1016/j.jaci.2017.08.034.
490	LUEONG S, LEONG S, SIMO G, et al. 2013. The miRNA and mRNA Signatures of
491	Peripheral Blood Cells in Humans Infected with Trypanosoma brucei
492	gambiense. PLoS One. [J]. 8: e67312. 10.1371/journal.pone.0067312.
493	MARCILLA A, TRELIS M, CORTéS A, et al. 2012. Extracellular vesicles from
494	parasitic helminths contain specific excretory/secretory proteins and are
495	internalized in intestinal host cells. PLoS One. [J]. 7: e45974.
496	10.1371/journal.pone.0045974.
497	NINOMIYA-TSUJI J, KISHIMOTO K, HIYAMA A, et al. 1999. The kinase TAK1
498	can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1
499	signalling pathway. Nature. [J]. 398: 252-256. 10.1038/18465.
500	PEARCE E J, MACDONALD A S 2002. The immunobiology of schistosomiasis. Nat
501	Rev Immunol. [J]. 2: 499-511. 10.1038/nri843.
502	PEGTEL D M, GOULD S J 2019. Exosomes. Annu Rev Biochem. [J]. 88: 487-514.
503	10.1146/annurev-biochem-013118-111902.
504	PENG J, FEDERMAN H G, HERNANDEZ C M, et al. 2022. Communication is key:
505	Innate immune cells regulate host protection to helminths. Front Immunol. [J].
506	13: 995432. 10.3389/fimmu.2022.995432.

507	DING (NIM ELANELL DA DAVIG DA 2000 The DIV or 1 D20 MAD Lines	
507	RINCON M, FLAVELL R A, DAVIS R A 2000. The JNK and P38 MAP kinase	
508	signaling pathways in T cell-mediated immune responses. Free Radic Biol	
509	Med. [J]. 28: 1328-1337. 10.1016/s0891-5849(00)00219-7.	
510	SAMOIL V, DAGENAIS M, GANAPATHY V, et al. 2018. Vesicle-based secretion	
511	in schistosomes: Analysis of protein and microRNA (miRNA) content of	
512	exosome-like vesicles derived from Schistosoma mansoni. Sci Rep. [J]. 8:	
513	3286. 10.1038/s41598-018-21587-4.	
514	SAMOREK-PIERóG M, KARAMON J, BRZANA A, et al. 2021. Molecular	
515	Confirmation of Massive Taenia pisiformis Cysticercosis in One Rabbit in	
516	Poland. Pathogens. [J]. 10. 10.3390/pathogens10081029.	
517	SILVERMAN J M, CLOS J, DE'OLIVEIRA C C, et al. 2010. An exosome-based	
518	secretion pathway is responsible for protein export from Leishmania and	
519	communication with macrophages. J Cell Sci. [J]. 123: 842-852.	
520	10.1242/jcs.056465.	
521	SU X Z, ZHANG C, JOY D A 2020. Host-Malaria Parasite Interactions and Impacts	
522	on Mutual Evolution. Front Cell Infect Microbiol. [J]. 10: 587933.	
523	10.3389/fcimb.2020.587933.	
524	SUN X, LI X, ZHOU Y, et al. 2022. Exogenous TIPE2 Inhibit TAK1 to Improve	
525	Inflammation and Neuropathic Pain Induced by Sciatic Nerve Injury Through	
526	Inactivating NF-κB and JNK. Neurochem Res. [J]. 47: 3167-3177.	
527	10.1007/s11064-022-03671-4.	
528	TAKEDA K, OMATA Y, KOYAMA T, et al. 2003. Increase of Th1 type cytokine	
529	mRNA expression in peripheral blood lymphocytes of calves experimentally	
530	infected with Cryptosporidium parvum. Vet Parasitol. [J]. 113: 327-331.	
531	10.1016/s0304-4017(03)00080-3.	
532	TIWARI S, KUMAR V, RANDHAWA S, et al. 2021. Preparation and	
533	characterization of extracellular vesicles. Am J Reprod Immunol. [J]. 85:	
534	e13367. 10.1111/aji.13367.	
535	VACCA F, LE GROS G 2022. Tissue-specific immunity in helminth infections.	
536	Mucosal Immunol. [J]. 15: 1212-1223. 10.1038/s41385-022-00531-w.	
537	VALADI H, EKSTRÖM K, BOSSIOS A, et al. 2007. Exosome-mediated transfer of	
538	mRNAs and microRNAs is a novel mechanism of genetic exchange between	
539	cells. Nat Cell Biol. [J]. 9: 654-659. 10.1038/ncb1596.	
540	WANG L, LIU T, CHEN G, et al. 2021. Exosomal microRNA let-7-5p from Taenia	
541	pisiformis Cysticercus Prompted Macrophage to M2 Polarization through	
542	Inhibiting the Expression of C/EBP δ . Microorganisms. [J]. 9.	
543	10.3390/microorganisms9071403.	
544	WANG L O. LIU T L. LIANG P H. et al. 2020. Characterization of exosome-like	
545	vesicles derived from Taenia pisiformis cysticercus and their	
546	immunoregulatory role on macrophages. Parasit Vectors. [J], 13: 318.	
547	10.1186/s13071-020-04186-z.	
548	WEBER JL RODRIGUES A V. VAL & RIO-BOL AS A. et al. 2023. Insights on	
549	Host-Parasite Immunomodulation Mediated by Extracellular Vesicles of	
5-75	These Tarashe minimistrication mediated by Extracential (colors of	

Cutaneous Leishmania shawi and Leishmania guyanensis. Cells. [J]. 12.
10.3390/cells12081101.
YANG D, CHEN L, XIE Y, et al. 2013. Expression and immunolocalisation of
TpFABP as a candidate antigen for the serodiagnosis of rabbit Taenia
pisiformis cysticercosis. Parasite. [J]. 20: 53. 10.1051/parasite/2013053.
YANG J, WU J, FU Y, et al. 2021. Identification of Different Extracellular Vesicles
in the Hydatid Fluid of Echinococcus granulosus and Immunomodulatory
Effects of 110 K EVs on Sheep PBMCs. Front Immunol. [J]. 12: 602717.
10.3389/fimmu.2021.602717.
YU X, ODENTHAL M, FRIES J W 2016. Exosomes as miRNA Carriers:
Formation-Function-Future. Int J Mol Sci. [J]. 17. 10.3390/ijms17122028.
ZAMANIAN M, FRASER L M, AGBEDANU P N, et al. 2015. Release of Small
RNA-containing Exosome-like Vesicles from the Human Filarial Parasite
Brugia malayi. PLoS Negl Trop Dis. [J]. 9: e0004069.
10.1371/journal.pntd.0004069.
ZHANG J, LI S, LI L, et al. 2015. Exosome and exosomal microRNA: trafficking,
sorting, and function. Genomics Proteomics Bioinformatics. [J]. 13: 17-24.
10.1016/j.gpb.2015.02.001.
ZHANG X, GONG W, DUAN C, et al. 2022. Echinococcus granulosus
Protoscoleces-Derived Exosome-like Vesicles and Egr-miR-277a-3p Promote
Dendritic Cell Maturation and Differentiation. Cells. [J]. 11.
10.3390/cells11203220.
ZHENG Y, GUO X, SU M, et al. 2017. Regulatory effects of Echinococcus
multilocularis extracellular vesicles on RAW264.7 macrophages. Vet
1 0
Parasitol. [J]. 235: 29-36. 10.1016/j.vetpar.2017.01.012.

577 Table 1 Primers for PCR and qPCR

Primer	Sequence (5'-3')
pre-tpi-miR-10a-5p forward	CACCCTGTAGACCCGAGTTTGAG
pre-tpi-miR-10a-5p reverse	TGATGCCTTGAAGACACGAGC
tpi-miR-10a-5p forward	ATATATCACCCTGTAGACCCG
tpi-miR-10a-5p reverse	GCTGTCAACGATACGCTACG
MAP3K7 forward	GAGGAGCCTTTGGAGTGGTT

MAP3K7 reverse IFN-γ forward IFN-γ reverse TNF α forward TNF α reverse iNOS forward iNOS reverse IL10 forward IL10 reverse GAPDH forward GAPDH reverse MAP4K1 forward MAP4K1 reverse ASNS forward ASNS reverse NFATC2 forward NFATC2 reverse HOXB3 forward HOXB3 reverse NACA forward NACA reverse ATF4 forward

ACTGCCGAAGCTCCACAATA GGCTTTATACCTGGGGGCCAAAT AGCAGTGGCTCAGAATGCAG CGTAGTAGCAAACCCGCAAGTG CGCTGAAGAGAACCTGGGAGTAG GTTCAGAAGGGAGTAACCGCT GGCCTAGGAAAGAATGTGAGA GTCACCGATTTCTCCCCTGT GATGTCAAACTCACTCATGGCT TTGAAGGGCGGAGCCAAAA CAGGATGCGTTGCTGACAATC CGAGATGAGCACCGAGCACAAG CGAGATGAGCACCGAGCACAAG TTCATCGGTTGGCAGTGGTTGAC TCGCCTTGTGGTTGTAGATTTCTCC CCGCTGGAGCCCAAGAACAAC TCCTGCCGATGTCCGTCTCAC TTCATCCTTCTCTACCCTGCTCCTC CGATGAGACGGGTGTGGAAGTTAAG CTCGGACTGCCTTTGCTCTTGAC GCCCCAAGCCCTACGAGTCTG GCCGTCTTGTTCTGCTCCATCTTC

ATF4 reverse	TCTCTGTCTGCTCTCCTTGCTACC
GATA3 forward	GCTCTTACAGTGCCGAGAAACCC
GATA3 reverse	CAGCAGCTTCTACCTGGACA
RORA forward	GCCTGATGCTGGTGTGTAGT
RORA reverse	GGCTTTATACCTGGGGGCCAAAT

